
AADL Architecture Analysis & Design Language (Feiler et al., 2006)
AML Agent Modeling Language (Cervenka & Trencansky, 2000)
BCD Biological Circuit Diagram 
BDN (Functional) Block Diagram Notation, including International 

Electrotechnical Commission (IEC) standards 61499 (Vyatkin, 2007)
BIP Behavior, Interaction, Priority (BIP) modeling language 
BON Business Object Notation (Zamir, 1999)
BPMN Business Process Management Notation (Kossak et al., 2014)
Chain Graph Probabilistic Network Chain Graph (Kjaerulff & Madsen, 2008)
CLD Causal Loop Diagram (Kim, 1992)
CM Concept Map, also called Mind Map 
CS Construction Symbols for systems, or Utility Graffiti 
DAG Directed Acyclic Graph, or Acyclic Digraph 
DFD Data Flow Diagram 
DBS-VN Declarative Behaviour Specification Visual Notation (Kühne, 2011)
DRAKON DRAKON Visual Language (Parondzhanov, 1995)
DSRP Distinctions / Systems / Relationships / Perspectives (Cabrera & 

Cabrera, 2015)
e3value e3value notation (Hotie & Gordijn, 2017)
EEN Electrical Engineering Notation 
Energese Energy Systems/Circuit Language (Odum & Odum, 2000)
EPC Event-driven Process Chain 
Flowchart Flowchart 
Flowgraph Flowgraph (mathematics) or Flow Network 
FHEN Fluid Hydraulics Engineering Notation 
FMC Fundamental Modeling Concepts notation (Apfelbacher & Rozinat, 

2003)
FODA-FD Feature-Oriented Domain Analysis Feature Diagrams (also called 

Original Feature Trees, or OFTs; Schobbens, 2007)
FRAM Functional Resonance Analysis Method (2019)
G-OWL Graphical Ontology Web Language 
Graham Chart Graham (Process) Chart (Graham, 2004)
Graph Theory Graph Theory, a branch of discrete mathematics (Trudeau, 1993)
GTM Graphical Topic Maps (Thomas et al., 2008)
[M-]IDEF[Ø-14] Icam [Integrated Computer Aided Manufacturing] DEFinition includes 

several notation specifications (Laamanen, 1994), with IDEFØ based 
on SADT and M-IDEFØ being a modification (Serifi & Dašić, 2009)

iStar iStar or i* 
KEGG Kyoto Encyclopedia of Genes and Genomes Pathway/Wiring Diagram 

Notation (www.kegg.jp)
KiPN Knowledge-intensive Processes Notation (Netto et al., 2019)
Machinations Machinations Game System Notation (Adams & Dormans, 2012)
MEN Mechanical Engineering Notation 
MCD Markov Chain Diagrams 
MBWD Molecular Biology (Biochemical Pathway) Wire Diagram notation 

(Michal & Schomburg, 2012).
[e]MIM Molecular Interaction Map notation, with eMIM as the interactive 

version (Kohn et al., 2006)
mEPN modified Edinburgh Pathway Notation, with mEPN3D as a very 

different three-dimensional version (Freeman et al., 2010)
NCD Neural Circuit Diagram 
ORM2 Object-Role Modeling version 2 (Halpin, 2015) 
Petri Nets Petri Nets (Petri, 1962)
P&ID Piping & Instrumentation Diagram Notation 
PPINOT Process Performance Indicators Notation (del-Río-Ortega et al., 2019)
Process Map Process Map (and roles: Salvati et al., 2023)
Railroad Railroad Diagram 
Railroad-S Railroad (Syntax) Diagram 
RALph Resource Assignment Language Graph (Cabanillas et al., 2015)
REFAS Requirements Engineering For self-Adaptive Software systems 

(Muñoz-Fernández et al., 2015)
Reo Reo Coordination Language (Arbab, 2004)
S&FD Stock & Flow Diagram/Forrester Diagram (Forrester, 1961)
Sankey  Sankey Diagram 
SBGN Systems Biology Graphical Notation (Le Novère et al., 2010)
SDL Specification & Description Language, a variant of flowchart (Insert)
SC Software Engineering Structure Chart (Martin & McClure, 1988)
Southbeach Southbeach Notation (Smith & Burnett, 2011)
SIGN System Implementation Graphical Notation (Rosin, 1977)
Simulink Simulink Block Diagram 
SOD System Object Diagram (Booch, 1994)
STD State-Transition Diagram 
STDT Structured Analysis and Design Technique 
Subway Map Subway System Diagram/Map (Vignelli, 1970)
SystemCSP System Communicating Sequential Processes Notation (Insert)
UML Unified Modeling Language, with Systems Modeling Language 

(SysML) as mostly a subset 
Unit VPS Unit Visual Programming System (Timbó, 2021)
VNDBS Visual Notation for Declarative Behavior Specification 
VSM-N  Viable Systems Model Notation (Beer, 1995)
Wardley Map Wardley [Value Chain] Map (Wardley, 2018)
YAWL Yet Another Workflow Language (Van der Aalst et al., 2003)
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LINK

A link (or edge) is any connection between 
nodes. If connecting more than two nodes, 
the link may be called a hyper-link (or hyper- 
edge). A link may abut or encompass a node.

02

NODE HIERARCHY

Nodes are often differentiated with size and 
shape into designate tiers or functions. For 
example, a secondary node (transit node) 
may indicate a process or transformation 
between primary nodes, as with Petri Nets.  
Accordingly, tertiary nodes are positioned 
between secondary ones (as with ORM2) or 
represent minor points along links. 
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LINK END

Links usually have symbolic ends encoded 
to indicate relation type. Arrowheads are the 
most common ends but many other symbol 
encodings are available. Doubled-up end- 
symbols (rows 6-7) multiply the number of 
possible encodings. M-IDEFØ combines up 
to four elements to show weak (         ) to
strong influence (           ). Even simple 
arrows can have several semantic mean- 
ings across diagrams, such as causality, 
temporal sequence, ordered relation, inter- 
action, state change, conditional relation, 
and spatial movement (Kurata & Egenhofer, 
2005). End symbols can be placed at both 
ends of a link. However, some notations 
encode link beginnings differently (last two 
rows). That can make beginnings and ends 
of links clearer. The nature of the departure 
can also be encoded. For example, BPMN 
uses a slash (       ) for the default option 
when more than one out-bound link is 
connected to a node. 
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LINK LINE-STYLE

The line style of links can be coded to indi- 
cate a type or quality of relation. Dotted and 
dashed lines are common differentiators, as 
are color-coded lines. Links may be drawn 
thickly to provide space for an overlaid label. 
Sankey diagrams use line thickness to indi- 
cate magnitude of flow or influence. 
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LINK-END MODIFIER

Symbols can be placed next to a link end to 
qualify its meaning. For example, with IDEFØ, 
brackets around a beginning (or end) indi- 
cate a shift from (or to) a lower level of scale 
(”tunneled arrows”). In NCD notation, a color- 
coded triangle points to the beginning sym- 
bol it modifies (indicating a particular regu- 
latory influence on the relation). A circle 
next to an arrow head signifies an inevitable 
effect in Southbeach notation. AML notation 
uses coded circles to modify the link with 
constraints (bottom row), potentially com- 
bined with doubled-up link-end symbols.

04

SELF-LINK

Nodes can link to themselves to indicate 
iteration or a continuation of state. For 
example, MCD notation shows state trans- 
itions. If an object’s previous state recurs 
over the next cycle, it is shown as a self- 
link, often with a label indicating the likeli- 
hood of its occurance (expressed as a prob- 
ability). 
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PORT

A port is a designated space on (or abut- 
ting) the outer edge of a node where links 
arrive or depart, often with information 
encoded in (or near) the space. For example, 
with many visual programming languages, 
ports indicate values or operations trans- 
mitted through links, as indicated by a port 
label. A variety of shapes and symbols are 
used to designate ports. Ports often imply a 
condition (such as compatibility) or a sub- 
routine being performed to process an 
arrival or departure. Some notations take 
the idea to an extreme by covering a node 
with ports and port-label boxes (BIP) or 
ports with letter abbreviations (FRAM). Ports 
also apply to boundaries (see 27) but often 
with very different functionality.
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NODE

Every network-based diagram has lines 
(links) connecting objects called nodes 
(vertices, points, or elements). Nodes can 
represent actors, objects, processes, or 
places. They take the form of enclosed 
shapes, symbols, compact illustrations, or 
stand-alone text labels (with or without 
some form of bracketing).
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NODE SHAPE

Notations that use multiple shapes for 
nodes encode each one with specific mean- 
ings, such as node function.  Flowcharts are 
an obvious example, with different shapes 
indicating the type of operation to be per- 
formed on a case proceeding through the 
system. Shapes can also be drawn with a 
third dimension (last row) to make them 
stand out, at the risk of adding visual noise. 
A risk with multiple shapes is that certain 
ones look larger than others even with the 
same dimensions. Optical adjustments can 
be made to ensure certain nodes do not 
gain unintended emphasis.
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LABEL LINES

A proximate label can be associated with an 
object using a line. To avoid confusion, the 
line is differentiated from links, usually by 
using a kinked (N-type) line. 
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Label Label

LINK MODIFIER

A symbol placed along a link can qualify the 
nature of the relation. For example, iStar 
notation overlays a letter “D” to represent 
“dependency.” Southbeach notation adds 
symbols for delayed effect and accellerated 
effect. G-OWL uses of letters in a line gap to 
modify the link encoding. One benefit of a 
modifier is that it can be applied to various 
line styles, instead of stipulating line styles 
for every possible combination of qualities.
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PORT GROUP (INTERFACE)

A port group (also called an interface) are 
designated places on or near a node edge 
that contains one or more ports. Often this 
takes the form of an enclosure that fully (or 
partially) envelopes a set of ports. AADL is 
somewhat unique insofar as it does not 
conform to those patterns but, instead, has 
a symbol (   ) signifying multiple ports or 
acting as a connector to mixed port types 
(second row). 
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OVERLAID MARKS

A mark can be placed overtop of the whole 
of a node in order to designate it in some 
way. The most common example is the X-ing 
out of nodes, which happens with YAWL 
notation.
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LINK JUNCTION (GATEWAY)

A link junction (or gateway) is a node 
through which links can branch or merge 
according to specified branch-logic short- 
hand. Simple branches (21) and merges (22) 
do not specify rules but may attribute a 
quality to the interaction. Each row to the 
left shows a different set of examples. the 
e3 notation uses lines and dots to indicate 
AND, OR and cardinality dependency (top 
row). BPMN uses symbol-encoded diamonds 
for similar purposes. DBS-VN (bottom row) 
uses symbols and brackets to imply the 
nature of the merger taking place. 
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NODE JUNCTION

A node junction specifies how (a.) a link 
branches when more than one departs from 
a node or (b.) how multiple links merge 
when arriving at a node. It is not a separate 
node but an attachment to a node. Usually 
Boulean operators (AND, OR, XOR) or other 
forms of conditional logic are signified. More 
common methods for doing this are link 
junctions, link interiors, and link-end labels.
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LINK INTERIOR

When lines branch from a node to create an 
acute angle, an arc line can be drawn to 
encode the branch with meaning. For 
example, with FODA-FD, an arc line with an 
angle fill indicates “OR” features, whereas a 
simple arc line indicates “XOR” (mutual 
exclusion). That notation also allows for 
common shorthands used for conditional 
logic: “0..1” at least one chosen; “1” exactly 
one chosen; “0..*” an arbitrary number 
chosen; “1..*” at least one chosen; and such. 
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1..*

1..3
{xor}

PILED NODES

Nodes can be arranged in a pile, with multi- 
ple versions of the same symbol overlaid 
with a partial offset. The meanings of these 
piles can vary significantly across nota- 
tions. Flowchart style notations (such as 
Drakon) often use piles as just another form 
of symbol. Piles can signify a related set. 
Some notations (such as YAWL) use piles to 
indicate multiple instances, with a label 
placed above to add relevant details.
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COUNTER

A counter indicates the number of items in a 
node at a particular point in time, with the 
node representing a procedure or station as 
part of a larger sequence. The counters 
move within the system diagram, leaving 
one node and landing in another. This device 
is helpful if nodes have finite capacities. The 
Petri net is a notation that requires count- 
ers. Machinations uses stacked piles of 
color-coded counters for resources stored 
in a node. When the number of counters 
becomes too large to illustrate, the 
counters are replaced by numbers.
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DETOUR

While connecting one node to another, a link 
may rebound off of a third node in a differ- 
ent causal chain, as indicated by an abrupt 
link detour. For example, Graham charts 
have a V-shaped line-segment to show how 
causal relation will have a side-effect on 
another process (top row). The reverse is 
possible, as one flow rebounds off another 
to pick up an additional quality or taint, as 
with some variants of MBWD notation 
(bottom row).  
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LOOP LABEL

A closed loop can have a free-floating label 
at its center as an icon or text label. For 
example, CLD notations labels reinforcing 
and balancing loops. Some icons contain 
arrowed lines that potentially interfere with 
the interpretation of nearby links. Nested 
loops make it harder to associate a free- 
floating label with a loop.  
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TERMINUS

Notations may have points beyond which 
system interactions cease. For example 
several notations have symbol nodes for 
entropy, degradation, or discard. A terminus 
can also take the form of a special type of 
link end.
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QUEUE

When a notation uses nodes as stations or 
process stages, there may be an implied 
wait. However, most notations do not make 
timing intrinsic to the way a diagram works. 
Rack-like tables are thus inserted to repre- 
sent a capacity constraint, wait, or 
threshold. These are “nodes” in a loose 
sense; more like elaborate combinations of 
tables, symbols, counters, and nodes. A few 
notations use ordinary nodes, such as 
symbolic nodes for delay (    ) and queue (    ) 
in Machinations. The convention of showing 
a queue as a rack-like label has made it 
somewhat recognizable across notations in 
particular fields, so much so that symbolic 
nodes use a simplified version (      ).
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JUMP

A jump is a place where a diagram ends but 
is expected to continue on another page (or 
space). A jump is also called an “off-page 
reference” in flowcharts and engineering 
notations.
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HYBRID NODES

Two distinct node types may be combined in 
order to indicate qualities of both sub- 
types. For example, Graham charts rely on 
nodes made of basic shapes which can be 
laid overtop of each other to create a new 
type of node encoding.
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NODE COMPARTMENT

Nodes can be subdivided into sections 
separated by lines, with each compartment 
storing a particular type of information, 
usually a text string. Most commonly, a 
node will have a “marquee” compartment 
for the label and a “gutter” compartment 
for minor technical distinctions. With ORM2 
(bottom row), secondary transit nodes may 
be divided for bi- (or tri-) directional links. 
Because links are expected to be readable 
both backwards and forwards, seperate 
compartments represent different mean- 
ings based on the direction of movement.   
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Pack / Unpack
LuggageClothes

CONJOINED NODES (COMPLEX)

Nodes that can otherwise stand apart are 
conjoined to indicated combination. Stacks 
tend to be conjoined nodes, although they 
can be arrangements of nearby (not adjoin- 
ing) cells. Biological notations tend to call 
conjoined nodes a complex. With some 
notations, the boundary between nodes 
suggests a fitting together, as with SIGN 
notation where arcs indicate “docked” node 
edges (bottom left). Joined edges that 
follow the flow of links may indicate a 
sequence, as is common to Energese 
(second row).  
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RELATIONAL NODE

Nodes can indicate directionality or organ- 
ization with shapes, often serving a role as 
link in stack diagrams. 
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NODE LINE-STYLE

Nodes and node status can be different- 
iated with lines styles. For example, BPMN 
(top row) has line styles that apply to a set 
of secondary nodes to indicate a status. 
Lines can also be color coded or offset with 
an underlying shadow.
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NODE FILL

Nodes can contain a color or pattern fill to 
differentiate or encode a particular meaning.
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NODE HALO

Instead of differentiating a node with a line 
style or fill, an enclosed space surrounding 
the node can be encoded using line style or 
fill, as with Wardley maps. A halo can also be 
used to group multiple objects as a single 
node.

12

NODE SYMBOL

A stand-alone symbol can be the node. A 
symbol can also stand out at the center of 
an enclosed shape to differentiate a node 
(third row). Moreover, a symbolic shape may 
be used for a node, as is common with com- 
puter science notations and the cloud 
symbol (     ). Stand-alone symbols are 
handy for secondary and tertiary nodes 
given their compactness. Engineering 
notations make extensive use of symbol 
nodes, often with subtle variations among 
symbols to indicate variety of types. 
Confusingly, some of these symbols look 
more like link modifiers (bottom row).
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NODE MODIFIER

Marks can be added to shapes to modify a 
node, such as change its function or state. 
As with link modifiers, use of node modifiers 
can be applied to different shaped nodes, 
reducing the need for a large number of 
shape encodings. This comes at the cost of 
less interior space to add labels or other 
markings. For that reason, badges and 
node-margin marks tend to offer greater 
flexibility.
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NESTED LABEL

Many notations place labels within nodes, 
either at the top or center. Top labels may 
come with additional compartment, bullet 
mark, or background shape. Nested labels 
are constrained by the interior space and 
shape of the node, which often results in 
abbreviations, acronyms, and squinty text 
sizes.
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TIMING CUE

Timing may be important to a system. 
Accordingly timing durations can be added 
to nodes and links. However, it may not 
always be clear when the overall timing 
starts and stops. Thus, special cues may be 
added, either to links (first example) or 
nodes (second example).
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FLOW LIMITER

Notations for physical systems involving 
flows or currents can have (a.) valves to 
restrict the rate of flow, (b.) gates that place 
conditions on passage, or (c.) switches that 
turn flow on and off. Some general notations 
use such devices, as with S&FD relying 
heavily on valves. These flow limiters are a 
special class of either node or link modifier 
depending on whether they act as a control 
point or only as a gauge respectively. Some 
have a gauge-like extension to show rate 
information (bottom left two) which can be 
a live status display in non-static diagrams.

52

CONTAINER

A container encircles one or more nodes 
(and links) to set them apart for some 
purpose. Containment may simply group like 
items together. It may signify an underlying 
domain or environmental context. Contain- 
ment may also demarcate tangible bound- 
aries or modular sub-systems, as with nest- 
ed nodes (28). Thus, container boundaries 
can have ports or otherwise imply restricted 
movement. Containers can show assem- 
blages of circuits which have no links 
between them, like stack cells, but share 
cross-references to indicate interrelation. 
Containers can be discrete categories or be 
overlapping, as with Venn diagrams. Some 
sort of line style or fill color differentiates 
containers from ordinary nodes.
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PROXIMATE LABEL

Viewers associate items that are placed 
together in close proximity. Accordingly, 
labels can be placed near items they refer 
to. To avoid misattribution in dense 
diagrams, free-floating labels are best 
placed in a predictable position relative to 
items, such as labels directly below nodes 
or at the mid-point of links. 
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Label
Label Label

S 1..*

LABEL MARK

Labels can be modified with a mark. Often 
this takes the form of a small icon used to 
bullet the label. BON uses a set of label 
marks directly above a nested label, as well 
as label underlining as an encoded signifier.
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Label

Label

Label Label Label*

DIVIDER

Lines can organize chains of nodes and 
links without enclosure. Such dividers can  
be a tangible boundary or conceptual dis- 
tinction. A line style usually differentiates a 
divider from other lines. Dividers often form 
lanes or columns to represent particular 
domains. Dividers can also subdivide 
containers, such as BPMN’s “swim lane” 
divisions within larger “pools.”
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NOTE

Clarifying annotations can be added to 
boxes specifically encoded for that purpose. 
KiPN is an example that relies heavily on 
notes and has several types, mostly differ- 
entiated by line styles. 
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text
string

text
string

N-CASE SHORTHAND

If there are multiple instances of the same 
sub-system, then two or three examples 
can be shown, with the rest replaced by the 
points-of-ellipsis symbol (...). This is 
common to several flow- and wire notations. 
This symbol may also be used if part of the 
diagram has been removed for some other 
purpose. Points of ellipsis can also be used 
as a generic indicator of “continuation.”
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BRANCH (FORK)

A link can split into multiple links. A per- 
pendicular branch can signal a side-effect 
or secondary relation. Some notations add a 
waypoint symbol to indicate the nature of 
the split, such as SBGN using different 
symbols to indicate dissociation (    ) and 
truncation (     ). Railroad-S notation uses 
nodeless branching throughout to indicate 
optionality. Graham chart uses a bracketing 
technique (bottom row, left example). 
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MERGE (JOIN)

A link can join another link, often to signal a 
contributory or reinforcing influence. SBGN 
uses line ends to signify promotion (     ), 
inhibition (    ), or association (    ) of the 
merge transition (second row). MIM and 
eMIM notations do likewise with a zig-zag 
line end (third row). Multiple notations use a 
bar-like line (bottom row) to provide a large 
number of in-coming links a tidy target to 
point to. 
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SYMBOLIC LINK SHAPE

Symbolic link shapes are a special case of a 
link where the way the link is drawn is 
intended to invoke a meaning. A link shaped 
like a lightning bolt is an obvious example. 
An arrow with a wider “stem” (relative to its 
“neck”) is a symbolic shape that often 
indicates a concentrated flow or culminat- 
ing effect. Symbolic links that are harder to 
detect include those with symbolic kinks, 
which might be mistaken for ordinary way- 
points. 
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CROSS-OVER

A link can “jump” over another link to show 
that there is no interaction; the lines merely 
get in each others way and a cross-over 
connector makes that clear.
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JOINT

Links can connect continuously without a 
node per se. Indeed, conduits connecting 
directly with other conduits is common to 
many systems. The joint (or binding) can be 
made explicit, with a point showing a plug 
and receptacle, as with electrical notations. 
That makes compatibility between links 
obvious. Link ends can overlap. The joint can 
also be implicit with a change in line styles. 
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WAYPOINT

A place where a link changes course is 
called a waypoint. This can be a single point 
or an enclosed zone.
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LASSO

A lasso groups links into bundles as they 
flow through an enclosed shape. That may 
be for purposes of labeling nearby links. 
With Energese notation, a diamond shape 
ties together two flows into a transaction, 
such as money in exchange for materials.
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SEGMENT

Sections of a link may be singled out for a 
particular purpose. SysML notation (UML) 
uses brackets to signify “coregion,” group- 
ing any links that branch or merge in that 
span. mEPN groups nodes and links along a 
longer path with brackets. The link may also 
be made up of segments of finite length, 
with ends indicated by notches, as with 
several engineering notations.
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BRIDGE

Connecting links between other links can 
serve a function, such as allow connectivity 
between otherwise incompatible conduits. 
Unit VPS notation uses bridges (“plugs”) to 
control link pathways. NCD notation uses 
bridges to signify a change of the signal 
transmitted through links, an “inhibition” or 
“excitation” of the signal. Some UML nota- 
tions use bridges (”complex connectors”) to 
connect a link to two ports simultaneously.
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MULTI-THREADED LINK

Links can be shown in parallel between 
nodes to show aggregate or reinforcing 
effects, or to reduce link clutter. The spatial 
density of the multi-threaded link makes it 
difficult to apply labels to individual threads 
until they branch out. Thus, each thread is 
usually color-coded, as with Subway Maps 
in the Beck/Vignelli diagram style. Multiple 
link ends may be used as a more glanceable 
indicator of how many links end at a node.
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TAG

A tag underlays or abuts an object (node or 
link) to modify it in some way. Tags are 
similar to badges but do not obscure any 
part of the object they modify. Tags are 
often better than free-floating, proximate 
labels on dense diagrams insofar as they 
make it clear what is being referred to. An 
interesting example is SOD notation’s use of 
tags on links (near where nodes are) to 
express how visible a particular influence is. 
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BADGE

A badge partially overlays an item (node or 
link) to modify it in some way. Badges are 
often used to indicate status of nodes and 
valence of a link. Part of an underlying node 
becomes obscured, which precludes margin 
marks in the same corner or side as the 
badge. Bayesian flowgraphs use a badge 
(”   ” in a rounded square) to indicate “evid- 
ence,” either “hard” (solid line) or “soft” 
(dotted line). Some process-map notations 
place color-coded diagonal lines across 
links to indicate which roles are involved in 
the action. Notations that accommodate 
unknowns or uncertainty often do so with 
the help of badges.
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In the study of systems, a graphical 
notation is a set of visual conventions 
for diagramming systems in a standard 
way. As the old joke goes: what’s great 
about standards is there’s so many to 
choose from. When it comes to system 
notations, that is an extreme under- 
statement and therein lies a dilemma. 

Elaborate systems have many moving 
parts, usually too many to juggle in the 
mind at once. Notations offer a short- 
hand for keeping track of it all while 
considering the larger whole. However, 
each notation has its own assump-
tions of what a system is and how it 
works, which can be an awkward fit if 
the viewer brings different theoretical 
understandings. Most system nota- 
tions have been devised for narrow 
uses by highly specialized experts. As 
a result, a large number of notations 
have emerged but only a few have any 
general appeal. 

Dilemmas are opportunities in dis- 
guise. Only one or two notations were 
devised with any thought given to 
graphic- and information-design tech- 
nique. Many are downright amateurish 
in their treatment of visual cognition. 
There is much room for improvement. 
Yet notations are used by isolated dis- 
ciplines with little sharing of lessons 
learned. Efficacy is under-studied, 
even as shortcomings become 
obvious. All these dilemmas point to 
the need to take stock of the various 
notations to look carefully at how they 
differ and why.

The Anatomy of System Notations is an 
inventory of the graphic devices used 
in system notations. The ultimate goal 
is the creation of a new notation that: 
(a.) can express the full range of 
elements and dynamics of systems; 
(b.) can make sophisticated system 
analysis available to everyone, includ- 
ing across disciplines; and, (c.) works 

with emerging forms of interactive 
media. The Anatomy moves us closer 
to that goal on three counts. First, the 
shortcomings of notations can be 
catalogued. These are listed separately 
from this poster as a set of Problem 
Cards. Second, the Visual Vocabulary 
of Systems is a codex that captures all 
the elements and dynamics of sys- 
tems within the theoretical literatures 
of various disciplines. By comparing 
the Anatomy to the Visual Vocabulary, 
it is possible to see what subjects are 
hard (or impossible) to express using 
existing notations. Third, lessons can 
be drawn from innovative techniques 
found within existing notations. 

Notations are not the only way to vis- 
ualize systems. Information graphics, 
gigamaps, and synthesis maps mix 
various types of graphic to explain 
systems through bricolage. Popular 
genres of video games are about sys- 
tem building and maintenance. Visual 
programming languages use graphical 
notations to create software. The list 
goes on. Much can be learned from 
these alternatives, which are gaining 
large audiences. These methods also 
make selective use of notations and 
would benefit from notation improve-
ment. Notations, in turn, would benefit 
from cross-fertilization from these 
alternatives. All that begins by taking 
stock of what is available.

The larger concern is that notations 
have not kept pace with the complexi-
ty of systems and their entanglement 
in our lives. What sort of agency do we 
have if we do not grasp the full gamut 
of systems (natural and human-made) 
that push and pull us in all directions? 
What vulnerabilities and harms are we 
exposed to? A well-designed graph- 
ical notation can be part of a visual 
repertoire for making our highly 
systematized world easier to interpret.

graphical notations

What counts as a graphical notation 
for system diagramming? For starters, 
it has to be a set of graphic devices 
(textual elements, symbols, and 
visuals) that can be assembled to 
meaningfully describe the moving 
parts of a system. The set can emerge 
as widely recognized conventions or 
be stipulated as a formal specification. 
Some formal specifications become 
standards governed by a professional 
association. Crucially, any system is 
made up of moving parts that interact 
to affect overall behavior. Thus, the set 
of graphical devices cannot merely 
describe static structures. Moreover, 
the devices have to be a stable, finite 
set. That rules out visualization 
methods that use whatever graphic 
devices seem appropriate for the case 
at hand; there has to be a standard 
basis with which to compare features 
of different systems. 

The result of a diagram is a model, a 
simplification of the system being 
described; the map does not equal the 
territory, so to speak. That does not 
mean the description cannot be rich, 
with all the most salient details includ- 
ed. Even with notations embedded 
within visual programming languages, 
where the diagram elements perform 
functions, not everything about the 
system is shown; there remains a 
great deal of activity working behind 
the scenes, abstracted away from the 
viewer’s consideration. 

Most notations are variations on two 
themes: the network and the stack, as 
shown below. Network diagrams (or 
hypergraphs) are arrangements of 
nodes and links. Stack diagrams can 
be thought of as nodes without links, 

as proximate or abutting borders bet- 
ween cells are what imply interaction. 
System stacks are so-called because 
there is a loose order, from low-level 
sub-systems to higher order ones. Or, 
in the case of radial arrangements, 
from central cells to peripheral ones.

What sets one notation apart from any 
other? They differ along at least three 
dimensions. First, most diagram items 
are symbolic stand-ins for parts of 
actual systems. For example, an arrow 
with a solid line may indicate “excitory” 
relation, whereas a dashed line may be 
an “inhibitory” one. A square node may 
refer to “sellers” and a round one may 
be “buyers.” There is a limit to how 
many semantic encodings a viewer 
can be expected to remember. Second, 
each notation has its own composi-
tional rules which stipulate how the 
pieces are supposed to fit together 
visually. For example, some notations 
specify that links can only connect to 
nodes through “ports” (designated 
spots on the node). Third, a notation is 
made easy to interpret by meaningful 
spatial arrangements of items (syn- 
tactics). For example, a series of nodes 
and links may form a loop or a circuit 
that is recognizable as such. Some 
technical notations are complicated on 
one or more of these dimensions. 
Perhaps they have a large library of 
symbols that have to be learned. Or 
they have elaborate rules for diagram 
layouts. 

The Anatomy of System Notations 
looks for commonalities across the 
various notations and groups them as 
types of graphical device. Multiple 
examples of each one are shown to 
show the range of implementations.

basic forms
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RUNNING OBJECTS

Objects can move along links or be shown 
moving along-side them. With SC notation, 
multiple circle-with-arrow symbols run 
parallel to directionless links to show sig- 
nals (data) passing between nodes. The 
second row shows running counters from 
Machinations notation, with animated Petri 
Net counters traveling along links in a 
similar way. SOD notation relies on running 
signals, including a backward-bending 
arrow and label to indicate a signal that 
“balks” before arriving.
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RUNNING ARROWS

Unlabeled arrows can be placed alongside a 
link to indicate directionality. That might be 
done because the link is very long and 
winding, or because other available link 
encodings are used for non-directional 
information. A more space efficient option is 
to add arrow heads at one or more points 
along the link. A less obvious application is 
to indicate secondary flows that might run 
counter to primary directional indicators.
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37 PROXIMATE MARK

A compact mark or symbol is placed close 
to an item (usually a node) to add a qualifier. 
For example, some process-map notations 
assign roles to particular nodes and links, 
represented by color-coded circles that are 
placed near the item (sometimes in an 
overlapping arrangement to conserve space 
and indicate grouping). ORM2 uses lines 
placed above or below bi-directional transit 
nodes to designate uniqueness constraints 
and a nearby circuit icon (     ,      ,      , etc.) to 
indicate a ring constraint. Proximate marks 
can be placed anywhere near an item but 
most notations that use them place them 
above the item in a designated relative 
position (left, center, or right side).

NODE-MARGIN MARK

Small icons or encoded markings can be 
placed just inside the outer boundaries of 
rectangular nodes to indicate node type, 
quality, or state. Designated corners are 
often reserved for a particular set of marks 
to set viewer expectations. A corner mark 
can protrude out of one side of the node’s 
outer boundary or be placed on the bound- 
ary line, but cannot be positioned entirely 
outside (tag, 39) or mostly outside as an 
overlay (badge, 40).

38

C. Spatial Arrangements (Syntactics)

B. Compositional Rules (Grammar)

Loop

Radial Stack

Circuit

Concentric Stack

Lanes

Pyramidal Stack

Tree

Parallel Stack

A. Semantic Encodings (Symbolism)

= excite = inhibit

= latent = active

= and = xor

INSET TOPOLOGY

Mathematical and computer-science nota- 
tions may show network archetypes inside 
nodes, indicating an underlying structure. 
These miniature diagrams are more like 
thumbnail sketches than fully-fledged 
diagrams insofar as they are unlabeled and 
mostly indicate network type or general 
circuit structure.
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NESTED NODE

Nested nodes are one or more nodes 
located inside of other nodes. The nesting 
can represent a lower order of scale: the 
internal operations of the node that would 
otherwise be too small to show on the 
diagram. That does not preclude nested 
nodes from interacting with nodes nested 
inside other nodes. A nested node is 
distinguished from a container by the ability 
of the encompassing node to interact as 
any node would. For example, VSA notation 
(top row) shows nested nodes interacting 
across encompassing nodes, while the 
encompassing nodes act as aggregate 
agents. UML (middle row) uses nesting to 
show both sub-systems and the classifica- 
tion of instances. Energese (bottom row), 
uses encompassing nodes to represent 
organizations. 
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GROUP NODE

A group node aggregates a collection of 
mixed items. The items can show changes 
to internal composition or structure of the 
larger node. They can also be a shorthand 
for representing collective behavior. MBWB 
shows molecules as amalgams of bonded 
chemical elements (bottom row). Perhaps 
confusingly, these structures are shown as 
networks within a larger network diagram, 
creating a need to differentiate both types 
of networks visually. 
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BOUNDARY PORT

Boundary ports can regulate access to 
nodes within a container (or on the other 
side of any sort of boundary). A single port 
may offer access through a boundary and 
into a node, or allow some links to pass 
without ports but not others (top right). A 
boundary port can regulate access from the 
inside outward, not just from the outside 
inward (bottom right). As with node ports, 
these can be organized using interfaces too 
(bottom left).
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DECOMPOSITION BLOCKS

Nodes or containers can be used to repre- 
sent multiple levels of scale. Decomposition 
blocks show this using a magnification 
metaphor, with projection lines indicating 
that a lower level of magnitude is being rep- 
resented. With SDL and SADT notations the 
blocks are shown as three-dimensional 
planes (bottom example). Even though the 
example shows underlying systems also in 
3D (isometric) perspective, this need not be 
the case; the planes may be shown in 3D 
but the contents can be a flat 2D diagram. 
Call out boxes (     ) common to information 
diagrams and comic-book dialogue can also 
be used as decomposition blocks, although 
many notations use that particular graphic 
device for notes (60). 
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(ACYCLICAL) CONDENSATION

Busy networks can obscure big-picture 
effects. Conversely, summary networks can 
hide salient underlying churn. Some nota- 
tions summarize causal links between loops 
and circuits (DAG notation) while retaining 
cyclical dynamics. For example, the top row 
shows a super-imposed condensation, 
while the bottom row offers an acyclical 
“macro network” below the cyclical one (see 
Wahl & Runge, 2023). 
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DISCLOSURE TOGGLES

The DSRP notation has nodes with corner 
triangles to reveal node parts. The triangles 
work like the triangle toggles on Graphical 
User Interfaces (GUIs). On a static diagram, a 
downward triangle (   ) indicates that 
constituent parts are arranged below. A 
rightward (   ) triangle indicates constituent 
parts exist but are not shown. Toggles are 
used with transit nodes too (bottom row), 
as well as a variety of spatial arrangements 
of component parts below the node. This 
sort of device is ideally suited to interactive 
diagrams rather than static ones. BPMN also 
has a toggle (    ) placed more centrally to 
indicate “collapsed sub-process.” 
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INSET FUNCTION

Interaction between nodes may not be 
straight-forwardly linear. A graph may be 
shown inside a node to show curvilinear 
interactions or even more complicated 
functions. Energese shows how a path 
changes depending on what other influence 
happens to be interacting (top row). The 
graphs of two different nodes can even be 
connected with separate lines to show 
more precisely how the interaction works 
(third row). Visual programming languages 
have more flexibility for showing “live” 
graphs on nodes as interaction proceeds. 
Some flow-charts will indicate the desired 
distribution of a quantity across categories 
(bottom row).
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