
AADL Architecture Analysis & Design Language (Feiler et al., 2006)
AML Agent Modeling Language (Cervenka & Trencansky, 2000)
BCD Biological Circuit Diagram
BDN (Functional) Block Diagram Notation, including International

Electrotechnical Commission (IEC) standards 61499 (Vyatkin, 2007)
BIP Behavior, Interaction, Priority (BIP) modeling language
BON Business Object Notation (Zamir, 1999)
BPMN Business Process Management Notation (Kossak et al., 2014)
Chain Graph Probabilistic Network Chain Graph (Kjaerulff & Madsen, 2008)
CLD Causal Loop Diagram (Kim, 1992)
CM Concept Map, also called Mind Map
CS Construction Symbols for systems, or Utility Graffiti
DAG Directed Acyclic Graph, or Acyclic Digraph
DFD Data Flow Diagram
DBS-VN Declarative Behaviour Specification Visual Notation (Kühne, 2011)
DRAKON DRAKON Visual Language (Parondzhanov, 1995)
DSRP Distinctions / Systems / Relationships / Perspectives (Cabrera &

Cabrera, 2015)
e3value e3value notation (Hotie & Gordijn, 2017)
EEN Electrical Engineering Notation
Energese Energy Systems/Circuit Language (Odum & Odum, 2000)
EPC Event-driven Process Chain
Flowchart Flowchart
Flowgraph Flowgraph (mathematics) or Flow Network
FHEN Fluid Hydraulics Engineering Notation
FMC Fundamental Modeling Concepts notation (Apfelbacher & Rozinat,

2003)
FODA-FD Feature-Oriented Domain Analysis Feature Diagrams (also called

Original Feature Trees, or OFTs; Schobbens, 2007)
FRAM Functional Resonance Analysis Method (2019)
G-OWL Graphical Ontology Web Language
Graham Chart Graham (Process) Chart (Graham, 2004)
Graph Theory Graph Theory, a branch of discrete mathematics (Trudeau, 1993)
GTM Graphical Topic Maps (Thomas et al., 2008)
[M-]IDEF[Ø-14] Icam [Integrated Computer Aided Manufacturing] DEFinition includes

several notation specifications (Laamanen, 1994), with IDEFØ based
on SADT and M-IDEFØ being a modification (Serifi & Dašić, 2009)

iStar iStar or i*
KEGG Kyoto Encyclopedia of Genes and Genomes Pathway/Wiring Diagram

Notation (www.kegg.jp)
KiPN Knowledge-intensive Processes Notation (Netto et al., 2019)
Machinations Machinations Game System Notation (Adams & Dormans, 2012)
MEN Mechanical Engineering Notation
MCD Markov Chain Diagrams
MBWD Molecular Biology (Biochemical Pathway) Wire Diagram notation

(Michal & Schomburg, 2012).
[e]MIM Molecular Interaction Map notation, with eMIM as the interactive

version (Kohn et al., 2006)
mEPN modified Edinburgh Pathway Notation, with mEPN3D as a very

different three-dimensional version (Freeman et al., 2010)
NCD Neural Circuit Diagram
ORM2 Object-Role Modeling version 2 (Halpin, 2015)
Petri Nets Petri Nets (Petri, 1962)
P&ID Piping & Instrumentation Diagram Notation
PPINOT Process Performance Indicators Notation (del-Río-Ortega et al., 2019)
Process Map Process Map (and roles: Salvati et al., 2023)
Railroad Railroad Diagram
Railroad-S Railroad (Syntax) Diagram
RALph Resource Assignment Language Graph (Cabanillas et al., 2015)
REFAS Requirements Engineering For self-Adaptive Software systems

(Muñoz-Fernández et al., 2015)
Reo Reo Coordination Language (Arbab, 2004)
S&FD Stock & Flow Diagram/Forrester Diagram (Forrester, 1961)
Sankey Sankey Diagram
SBGN Systems Biology Graphical Notation (Le Novère et al., 2010)
SDL Specification & Description Language, a variant of flowchart (Insert)
SC Software Engineering Structure Chart (Martin & McClure, 1988)
Southbeach Southbeach Notation (Smith & Burnett, 2011)
SIGN System Implementation Graphical Notation (Rosin, 1977)
Simulink Simulink Block Diagram
SOD System Object Diagram (Booch, 1994)
STD State-Transition Diagram
STDT Structured Analysis and Design Technique
Subway Map Subway System Diagram/Map (Vignelli, 1970)
SystemCSP System Communicating Sequential Processes Notation (Insert)
UML Unified Modeling Language, with Systems Modeling Language

(SysML) as mostly a subset
Unit VPS Unit Visual Programming System (Timbó, 2021)
VNDBS Visual Notation for Declarative Behavior Specification
VSM-N Viable Systems Model Notation (Beer, 1995)
Wardley Map Wardley [Value Chain] Map (Wardley, 2018)
YAWL Yet Another Workflow Language (Van der Aalst et al., 2003)

Ernest Adams & Jois Dormans, Game Mechanics: Advanced Game Design (Berkeley, CA: New
Riders, 2012). Rémy Apfelbacher & Anne Rozinat, FMC Notation Reference [Appendix Version]
(Kaiserslautern: FMC Group, 2003). Farhad Arbab, “Reo: a channel-based coordination model
for component composition,” Mathematical Structures in Computer Science, vol. 14, no. 3
(2004), pp. 329-366. Stafford Beer, Brain of the Firm—Second Edition (Hoboken, NJ: Wiley,
1995). Grady Booch, Object-Oriented Analysis and Design—Second Edition (New York, NY:
Addison-Wesley, 1994). Cristina Cabanillas et al., “RALph: A Graphical Notation for Resource
Assignments in Business Processes, Jelena Zdravkovic et al., eds., Advanced Information
Systems Engineering, Proceedings of the 27th International Conference, CAiSE 2015 (Chem:
Springer, 2015), pp. 53-68. Derek Cabrera & Laura Cabrera, Systems Thinking Made Simple:
New Hope for Solving Wicked Problems (Ithica, NY: Odyssean Press, 2015). Radovan Cervenka
& Ivan Trencansky, The Agent Modeling Language – AML (Basil: Birkäuser, 2000). Peter H. Feiler
et al., ”The Architecture Analysis & Design Language (AADL): An Introduction,” Technical Note,
Carnegie Mellon University, Software Engineering Institute, no. 011 (2006). Jay Wright
Forrester, Industrial Dynamics (Cambridge, MA: Productivity Press, 1961). Tom C. Freeman et
al., “The mEPN scheme: an intuitive and flexible graphical system for rendering biological
pathways,” BMC Systems Biology, vol. 4, art. no. 65 (2010), pp. 1-13. Ben B. Graham, Detail
Process Charting (Hoboken, NJ: John Wiley & Sons, 2004). Adela del-Río-Ortega et al., “Visual
PPINOT: A Graphical Notation for Process Performance Indicators,” Business Information
Systems Engineering, vol. 61, no. 2 (2019), pp. 137-161. Terry Halpin, Object-Role Modeling
Fundamentals (Basking Ridge, NJ: Technics Publications, 2015). Takayuki Hirose & Tetsuo
Sawaragi, “Development of FRAM Model Based on Structure of Complex Adaptive Systems to
Visualize Safety of Socio-Technical Systems,” IFAC PapersOnLine, no. 52-19 (2019), pp. 13-18.
Felicia Hotie & Jaap Gordijn, “Value-Based Process Model Design,” Business Information
Systems Engineering, vol. 61, no. (2), pp. 163-180. Daniel H. Kim, “Guidelines for Drawing Causal
Loop Diagrams,” The System Thinking, vol. 3, no. 1 (1992), pp. 5-6. Uffe B. Kjaerulff & Anders L.
Madsen, Beyesian Networks and Influence Diagrams: A Guide to Construction and Analysis
(Chem: Springer, 2008). Kurt W. Kohn et al., “Molecular interaction maps of bioregulatory
networks: a general rubric for systems biology,” Molecular Biology of the Cell, vol. 17, no. 1
(2006), pp. 1-13. Felix Kossak et al., A Rigorous Semantics for BPMN 2.0 Process Diagrams
(Cham: Springer, 2014). Thomas Kühne, “A Visual Notation for Declarative Behaviour
Specification,” Electronic Communications of the EASST, vol. 42 (2011), pp. 1-10. Yohei Kurata
and Max J. Egenhofer, “Structure and Semantics of Arrow Diagrams,” Lecture Notes in
Computer Computer Science, no. 3693 (2005), pp. 232-250. Mary Laamanen, “The IDEF
standards process modeling standard,” in Alex Verrijn-Stuart and T. WIlliam Olle, eds.,
Methods and Associated Tools for the Information Systems Life Cycle (Amsterdam: Elsevier,
1994). James Martin & Carma McClure, Structured Techniques—Revised Edition (Englewood
Cliffs, NJ: Prentice Hall, 1988), pp. 181-190. Juan C. Muñoz-Fernández, Gabriel Tamura, Raúl
Mazo, and Camille Salinesi, “Towards a Requirements Specification Multi-View Framework for
Self-Adaptive Systems,” CLEI Electronic Journal, vol. 18, no. 2 (2015), paper 5. Joanne Manhães
Netto et al., “KiPN: A Visual Notation for Knowledge-intensive Processes,” International Journal
of Business Process Integration and Management, vol. 9, no. 3 (2019), pp. 197- 219. Gerhard
Michal & Dietmar Schomburg, Biochemical Pathways—Second Edition (Hoboken, NJ: John
Wiley & Sons, 2012). Nicolas Le Novère et al., “System Biology Graphical Notation: Entity
Relationship Language Level 1—Version 1.1,” Nature Proceedings (2010). V. D. Parondzhanov,
“Visual Syntax of the DRAKON Language,” Programming and Computer Software, vol. 21, no. 3
(1995), pp. 142-153. Howard T. Odum & Elisabeth C. Odum, Modeling for All Scales: An
Introduction to System Simulation (San Diego, CA: Academic Press, 2000). Robert F. Rosin, “A
Graphical Notation for Describing System Implementation,” Software—Practice & Experience,
vol. 7 (1977), pp. 239-250. Salvati et al., “A picture is worth a thousand words: advancing the
use of visualization tools in implementation science through process mapping and matrix
heat mapping,” Implementation Science Communications, vol. 4, no. 43 (2023), pp. 1-15.
Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves Bontemps,
“Generic Semantics of Feature Diagrams,” Computer Networks, vol. 51 (2007), pp. 356-479.
Howard Smith & Mark Burnett, The Elements of Southbeach Notation 0.9.6 (London:
Southbeach Solutions, 2011). Hendrik Thomas et al., “GTM alpha: Towards a Graphical Notation
for Topic Maps,” in Lutz Maicher and Lars Marius Gershol, eds., Subject-centric Computing,
Proceedings of the Fourth International Conference on Topic Maps Research and Applications
[TMRA] (Leipzig: Leipziger Beiträge zur Informatik, 2008), pp. 113-128. Veis Serifi & Predrag
Dašić, “Functional and Information Modeling of Production using IDEF Methods,”
Strojniški vestnik – Journal of Mechanical Engineering, vol. 55, no. 2 (2009), pp. 131-140.
Samuel Timbó, “Unit” [software repository], www.github.com/samuelmtimbo/unit
(2021). Richard J. Trudeau, Introduction to Graph Theory (New York, NY: Dover, 1993). Van der
Aalst, Wil, Arthur ter Hofstede, Bartosz Kiepuszewski, and Alistair P. Barros, “Workflow
Patterns: On the Expressive Power of (Petri-net-based) Workflow Languages,” Distributed and
Parallel Databases, vol. 14, no. (2003), pp. 5-51. Massimo Vignelli, System Map: New York
Subway Diagram [poster] (New York, NY: New York City Transit Authority, 1970). Valeriy Vyatkin,
IEC 61499 Function Blocks for Embedded and Distributed Control Systems Design (Research
Triangle Park, NC: Instrumentation, Systems, and Automation Society, 2007). Jonas Wahl &
Jakob Runge, “Foundations of Causal Discovery on Groups of Variables,” preprint manuscript
(2023). Kim Waldén, “Business Object Notation,” in Saba Zamir, ed., Handbook of Object
Technology (Boca Raton, FL: CRC Press, 1999), pp. 193-204. Simon Wardley, Wardley Maps [In
progress: www.medium.com/wardleymaps] (2018).

LINK

A link (or edge) is any connection between
nodes. If connecting more than two nodes,
the link may be called a hyper-link (or hyper-
edge). A link may abut or encompass a node.

02

NODE HIERARCHY

Nodes are often differentiated with size and
shape into designate tiers or functions. For
example, a secondary node (transit node)
may indicate a process or transformation
between primary nodes, as with Petri Nets.
Accordingly, tertiary nodes are positioned
between secondary ones (as with ORM2) or
represent minor points along links.

14

LINK END

Links usually have symbolic ends encoded
to indicate relation type. Arrowheads are the
most common ends but many other symbol
encodings are available. Doubled-up end-
symbols (rows 6-7) multiply the number of
possible encodings. M-IDEFØ combines up
to four elements to show weak () to
strong influence (). Even simple
arrows can have several semantic mean-
ings across diagrams, such as causality,
temporal sequence, ordered relation, inter-
action, state change, conditional relation,
and spatial movement (Kurata & Egenhofer,
2005). End symbols can be placed at both
ends of a link. However, some notations
encode link beginnings differently (last two
rows). That can make beginnings and ends
of links clearer. The nature of the departure
can also be encoded. For example, BPMN
uses a slash () for the default option
when more than one out-bound link is
connected to a node.

03

LINK LINE-STYLE

The line style of links can be coded to indi-
cate a type or quality of relation. Dotted and
dashed lines are common differentiators, as
are color-coded lines. Links may be drawn
thickly to provide space for an overlaid label.
Sankey diagrams use line thickness to indi-
cate magnitude of flow or influence.

05

LINK-END MODIFIER

Symbols can be placed next to a link end to
qualify its meaning. For example, with IDEFØ,
brackets around a beginning (or end) indi-
cate a shift from (or to) a lower level of scale
(”tunneled arrows”). In NCD notation, a color-
coded triangle points to the beginning sym-
bol it modifies (indicating a particular regu-
latory influence on the relation). A circle
next to an arrow head signifies an inevitable
effect in Southbeach notation. AML notation
uses coded circles to modify the link with
constraints (bottom row), potentially com-
bined with doubled-up link-end symbols.

04

SELF-LINK

Nodes can link to themselves to indicate
iteration or a continuation of state. For
example, MCD notation shows state trans-
itions. If an object’s previous state recurs
over the next cycle, it is shown as a self-
link, often with a label indicating the likeli-
hood of its occurance (expressed as a prob-
ability).

36

10%

PORT

A port is a designated space on (or abut-
ting) the outer edge of a node where links
arrive or depart, often with information
encoded in (or near) the space. For example,
with many visual programming languages,
ports indicate values or operations trans-
mitted through links, as indicated by a port
label. A variety of shapes and symbols are
used to designate ports. Ports often imply a
condition (such as compatibility) or a sub-
routine being performed to process an
arrival or departure. Some notations take
the idea to an extreme by covering a node
with ports and port-label boxes (BIP) or
ports with letter abbreviations (FRAM). Ports
also apply to boundaries (see 27) but often
with very different functionality.

17

A
B

Y

D E S I G N +
V I S U A L
T H I N K I N G

NODE

Every network-based diagram has lines
(links) connecting objects called nodes
(vertices, points, or elements). Nodes can
represent actors, objects, processes, or
places. They take the form of enclosed
shapes, symbols, compact illustrations, or
stand-alone text labels (with or without
some form of bracketing).

01

NODE SHAPE

Notations that use multiple shapes for
nodes encode each one with specific mean-
ings, such as node function. Flowcharts are
an obvious example, with different shapes
indicating the type of operation to be per-
formed on a case proceeding through the
system. Shapes can also be drawn with a
third dimension (last row) to make them
stand out, at the risk of adding visual noise.
A risk with multiple shapes is that certain
ones look larger than others even with the
same dimensions. Optical adjustments can
be made to ensure certain nodes do not
gain unintended emphasis.

07

LABEL LINES

A proximate label can be associated with an
object using a line. To avoid confusion, the
line is differentiated from links, usually by
using a kinked (N-type) line.

61

Label Label

LINK MODIFIER

A symbol placed along a link can qualify the
nature of the relation. For example, iStar
notation overlays a letter “D” to represent
“dependency.” Southbeach notation adds
symbols for delayed effect and accellerated
effect. G-OWL uses of letters in a line gap to
modify the link encoding. One benefit of a
modifier is that it can be applied to various
line styles, instead of stipulating line styles
for every possible combination of qualities.

06

PORT GROUP (INTERFACE)

A port group (also called an interface) are
designated places on or near a node edge
that contains one or more ports. Often this
takes the form of an enclosure that fully (or
partially) envelopes a set of ports. AADL is
somewhat unique insofar as it does not
conform to those patterns but, instead, has
a symbol () signifying multiple ports or
acting as a connector to mixed port types
(second row).

18

A

OVERLAID MARKS

A mark can be placed overtop of the whole
of a node in order to designate it in some
way. The most common example is the X-ing
out of nodes, which happens with YAWL
notation.

44

LINK JUNCTION (GATEWAY)

A link junction (or gateway) is a node
through which links can branch or merge
according to specified branch-logic short-
hand. Simple branches (21) and merges (22)
do not specify rules but may attribute a
quality to the interaction. Each row to the
left shows a different set of examples. the
e3 notation uses lines and dots to indicate
AND, OR and cardinality dependency (top
row). BPMN uses symbol-encoded diamonds
for similar purposes. DBS-VN (bottom row)
uses symbols and brackets to imply the
nature of the merger taking place.

20

NODE JUNCTION

A node junction specifies how (a.) a link
branches when more than one departs from
a node or (b.) how multiple links merge
when arriving at a node. It is not a separate
node but an attachment to a node. Usually
Boulean operators (AND, OR, XOR) or other
forms of conditional logic are signified. More
common methods for doing this are link
junctions, link interiors, and link-end labels.

23

LINK INTERIOR

When lines branch from a node to create an
acute angle, an arc line can be drawn to
encode the branch with meaning. For
example, with FODA-FD, an arc line with an
angle fill indicates “OR” features, whereas a
simple arc line indicates “XOR” (mutual
exclusion). That notation also allows for
common shorthands used for conditional
logic: “0..1” at least one chosen; “1” exactly
one chosen; “0..*” an arbitrary number
chosen; “1..*” at least one chosen; and such.

19

1..*

1..3
{xor}

PILED NODES

Nodes can be arranged in a pile, with multi-
ple versions of the same symbol overlaid
with a partial offset. The meanings of these
piles can vary significantly across nota-
tions. Flowchart style notations (such as
Drakon) often use piles as just another form
of symbol. Piles can signify a related set.
Some notations (such as YAWL) use piles to
indicate multiple instances, with a label
placed above to add relevant details.

46

COUNTER

A counter indicates the number of items in a
node at a particular point in time, with the
node representing a procedure or station as
part of a larger sequence. The counters
move within the system diagram, leaving
one node and landing in another. This device
is helpful if nodes have finite capacities. The
Petri net is a notation that requires count-
ers. Machinations uses stacked piles of
color-coded counters for resources stored
in a node. When the number of counters
becomes too large to illustrate, the
counters are replaced by numbers.

47

DETOUR

While connecting one node to another, a link
may rebound off of a third node in a differ-
ent causal chain, as indicated by an abrupt
link detour. For example, Graham charts
have a V-shaped line-segment to show how
causal relation will have a side-effect on
another process (top row). The reverse is
possible, as one flow rebounds off another
to pick up an additional quality or taint, as
with some variants of MBWD notation
(bottom row).

24

a

b

a+

LOOP LABEL

A closed loop can have a free-floating label
at its center as an icon or text label. For
example, CLD notations labels reinforcing
and balancing loops. Some icons contain
arrowed lines that potentially interfere with
the interpretation of nearby links. Nested
loops make it harder to associate a free-
floating label with a loop.

35

B1 R1

TERMINUS

Notations may have points beyond which
system interactions cease. For example
several notations have symbol nodes for
entropy, degradation, or discard. A terminus
can also take the form of a special type of
link end.

65

QUEUE

When a notation uses nodes as stations or
process stages, there may be an implied
wait. However, most notations do not make
timing intrinsic to the way a diagram works.
Rack-like tables are thus inserted to repre-
sent a capacity constraint, wait, or
threshold. These are “nodes” in a loose
sense; more like elaborate combinations of
tables, symbols, counters, and nodes. A few
notations use ordinary nodes, such as
symbolic nodes for delay () and queue ()
in Machinations. The convention of showing
a queue as a rack-like label has made it
somewhat recognizable across notations in
particular fields, so much so that symbolic
nodes use a simplified version ().

50

q

JUMP

A jump is a place where a diagram ends but
is expected to continue on another page (or
space). A jump is also called an “off-page
reference” in flowcharts and engineering
notations.

64

HYBRID NODES

Two distinct node types may be combined in
order to indicate qualities of both sub-
types. For example, Graham charts rely on
nodes made of basic shapes which can be
laid overtop of each other to create a new
type of node encoding.

45

NODE COMPARTMENT

Nodes can be subdivided into sections
separated by lines, with each compartment
storing a particular type of information,
usually a text string. Most commonly, a
node will have a “marquee” compartment
for the label and a “gutter” compartment
for minor technical distinctions. With ORM2
(bottom row), secondary transit nodes may
be divided for bi- (or tri-) directional links.
Because links are expected to be readable
both backwards and forwards, seperate
compartments represent different mean-
ings based on the direction of movement.

15

Pack / Unpack
LuggageClothes

CONJOINED NODES (COMPLEX)

Nodes that can otherwise stand apart are
conjoined to indicated combination. Stacks
tend to be conjoined nodes, although they
can be arrangements of nearby (not adjoin-
ing) cells. Biological notations tend to call
conjoined nodes a complex. With some
notations, the boundary between nodes
suggests a fitting together, as with SIGN
notation where arcs indicate “docked” node
edges (bottom left). Joined edges that
follow the flow of links may indicate a
sequence, as is common to Energese
(second row).

16

RELATIONAL NODE

Nodes can indicate directionality or organ-
ization with shapes, often serving a role as
link in stack diagrams.

08

NODE LINE-STYLE

Nodes and node status can be different-
iated with lines styles. For example, BPMN
(top row) has line styles that apply to a set
of secondary nodes to indicate a status.
Lines can also be color coded or offset with
an underlying shadow.

10

NODE FILL

Nodes can contain a color or pattern fill to
differentiate or encode a particular meaning.

11

NODE HALO

Instead of differentiating a node with a line
style or fill, an enclosed space surrounding
the node can be encoded using line style or
fill, as with Wardley maps. A halo can also be
used to group multiple objects as a single
node.

12

NODE SYMBOL

A stand-alone symbol can be the node. A
symbol can also stand out at the center of
an enclosed shape to differentiate a node
(third row). Moreover, a symbolic shape may
be used for a node, as is common with com-
puter science notations and the cloud
symbol (). Stand-alone symbols are
handy for secondary and tertiary nodes
given their compactness. Engineering
notations make extensive use of symbol
nodes, often with subtle variations among
symbols to indicate variety of types.
Confusingly, some of these symbols look
more like link modifiers (bottom row).

13

NODE MODIFIER

Marks can be added to shapes to modify a
node, such as change its function or state.
As with link modifiers, use of node modifiers
can be applied to different shaped nodes,
reducing the need for a large number of
shape encodings. This comes at the cost of
less interior space to add labels or other
markings. For that reason, badges and
node-margin marks tend to offer greater
flexibility.

09

NESTED LABEL

Many notations place labels within nodes,
either at the top or center. Top labels may
come with additional compartment, bullet
mark, or background shape. Nested labels
are constrained by the interior space and
shape of the node, which often results in
abbreviations, acronyms, and squinty text
sizes.

43

TIMING CUE

Timing may be important to a system.
Accordingly timing durations can be added
to nodes and links. However, it may not
always be clear when the overall timing
starts and stops. Thus, special cues may be
added, either to links (first example) or
nodes (second example).

51

FLOW LIMITER

Notations for physical systems involving
flows or currents can have (a.) valves to
restrict the rate of flow, (b.) gates that place
conditions on passage, or (c.) switches that
turn flow on and off. Some general notations
use such devices, as with S&FD relying
heavily on valves. These flow limiters are a
special class of either node or link modifier
depending on whether they act as a control
point or only as a gauge respectively. Some
have a gauge-like extension to show rate
information (bottom left two) which can be
a live status display in non-static diagrams.

52

CONTAINER

A container encircles one or more nodes
(and links) to set them apart for some
purpose. Containment may simply group like
items together. It may signify an underlying
domain or environmental context. Contain-
ment may also demarcate tangible bound-
aries or modular sub-systems, as with nest-
ed nodes (28). Thus, container boundaries
can have ports or otherwise imply restricted
movement. Containers can show assem-
blages of circuits which have no links
between them, like stack cells, but share
cross-references to indicate interrelation.
Containers can be discrete categories or be
overlapping, as with Venn diagrams. Some
sort of line style or fill color differentiates
containers from ordinary nodes.

25

PROXIMATE LABEL

Viewers associate items that are placed
together in close proximity. Accordingly,
labels can be placed near items they refer
to. To avoid misattribution in dense
diagrams, free-floating labels are best
placed in a predictable position relative to
items, such as labels directly below nodes
or at the mid-point of links.

41

Label
Label Label

S 1..*

LABEL MARK

Labels can be modified with a mark. Often
this takes the form of a small icon used to
bullet the label. BON uses a set of label
marks directly above a nested label, as well
as label underlining as an encoded signifier.

42

Label

Label

Label Label Label*

DIVIDER

Lines can organize chains of nodes and
links without enclosure. Such dividers can
be a tangible boundary or conceptual dis-
tinction. A line style usually differentiates a
divider from other lines. Dividers often form
lanes or columns to represent particular
domains. Dividers can also subdivide
containers, such as BPMN’s “swim lane”
divisions within larger “pools.”

26

NOTE

Clarifying annotations can be added to
boxes specifically encoded for that purpose.
KiPN is an example that relies heavily on
notes and has several types, mostly differ-
entiated by line styles.

60

text
string

text
string

N-CASE SHORTHAND

If there are multiple instances of the same
sub-system, then two or three examples
can be shown, with the rest replaced by the
points-of-ellipsis symbol (...). This is
common to several flow- and wire notations.
This symbol may also be used if part of the
diagram has been removed for some other
purpose. Points of ellipsis can also be used
as a generic indicator of “continuation.”

63

BRANCH (FORK)

A link can split into multiple links. A per-
pendicular branch can signal a side-effect
or secondary relation. Some notations add a
waypoint symbol to indicate the nature of
the split, such as SBGN using different
symbols to indicate dissociation () and
truncation (). Railroad-S notation uses
nodeless branching throughout to indicate
optionality. Graham chart uses a bracketing
technique (bottom row, left example).

21

MERGE (JOIN)

A link can join another link, often to signal a
contributory or reinforcing influence. SBGN
uses line ends to signify promotion (),
inhibition (), or association () of the
merge transition (second row). MIM and
eMIM notations do likewise with a zig-zag
line end (third row). Multiple notations use a
bar-like line (bottom row) to provide a large
number of in-coming links a tidy target to
point to.

22

SYMBOLIC LINK SHAPE

Symbolic link shapes are a special case of a
link where the way the link is drawn is
intended to invoke a meaning. A link shaped
like a lightning bolt is an obvious example.
An arrow with a wider “stem” (relative to its
“neck”) is a symbolic shape that often
indicates a concentrated flow or culminat-
ing effect. Symbolic links that are harder to
detect include those with symbolic kinks,
which might be mistaken for ordinary way-
points.

62

CROSS-OVER

A link can “jump” over another link to show
that there is no interaction; the lines merely
get in each others way and a cross-over
connector makes that clear.

59

JOINT

Links can connect continuously without a
node per se. Indeed, conduits connecting
directly with other conduits is common to
many systems. The joint (or binding) can be
made explicit, with a point showing a plug
and receptacle, as with electrical notations.
That makes compatibility between links
obvious. Link ends can overlap. The joint can
also be implicit with a change in line styles.

54

WAYPOINT

A place where a link changes course is
called a waypoint. This can be a single point
or an enclosed zone.

57

LASSO

A lasso groups links into bundles as they
flow through an enclosed shape. That may
be for purposes of labeling nearby links.
With Energese notation, a diamond shape
ties together two flows into a transaction,
such as money in exchange for materials.

58

a. b.

SEGMENT

Sections of a link may be singled out for a
particular purpose. SysML notation (UML)
uses brackets to signify “coregion,” group-
ing any links that branch or merge in that
span. mEPN groups nodes and links along a
longer path with brackets. The link may also
be made up of segments of finite length,
with ends indicated by notches, as with
several engineering notations.

56

BRIDGE

Connecting links between other links can
serve a function, such as allow connectivity
between otherwise incompatible conduits.
Unit VPS notation uses bridges (“plugs”) to
control link pathways. NCD notation uses
bridges to signify a change of the signal
transmitted through links, an “inhibition” or
“excitation” of the signal. Some UML nota-
tions use bridges (”complex connectors”) to
connect a link to two ports simultaneously.

55

MULTI-THREADED LINK

Links can be shown in parallel between
nodes to show aggregate or reinforcing
effects, or to reduce link clutter. The spatial
density of the multi-threaded link makes it
difficult to apply labels to individual threads
until they branch out. Thus, each thread is
usually color-coded, as with Subway Maps
in the Beck/Vignelli diagram style. Multiple
link ends may be used as a more glanceable
indicator of how many links end at a node.

53

TAG

A tag underlays or abuts an object (node or
link) to modify it in some way. Tags are
similar to badges but do not obscure any
part of the object they modify. Tags are
often better than free-floating, proximate
labels on dense diagrams insofar as they
make it clear what is being referred to. An
interesting example is SOD notation’s use of
tags on links (near where nodes are) to
express how visible a particular influence is.

40

LabelLabel

BADGE

A badge partially overlays an item (node or
link) to modify it in some way. Badges are
often used to indicate status of nodes and
valence of a link. Part of an underlying node
becomes obscured, which precludes margin
marks in the same corner or side as the
badge. Bayesian flowgraphs use a badge
(” ” in a rounded square) to indicate “evid-
ence,” either “hard” (solid line) or “soft”
(dotted line). Some process-map notations
place color-coded diagonal lines across
links to indicate which roles are involved in
the action. Notations that accommodate
unknowns or uncertainty often do so with
the help of badges.

39

Label Label

5

9

Label

Label Label

In the study of systems, a graphical
notation is a set of visual conventions
for diagramming systems in a standard
way. As the old joke goes: what’s great
about standards is there’s so many to
choose from. When it comes to system
notations, that is an extreme under-
statement and therein lies a dilemma.

Elaborate systems have many moving
parts, usually too many to juggle in the
mind at once. Notations offer a short-
hand for keeping track of it all while
considering the larger whole. However,
each notation has its own assump-
tions of what a system is and how it
works, which can be an awkward fit if
the viewer brings different theoretical
understandings. Most system nota-
tions have been devised for narrow
uses by highly specialized experts. As
a result, a large number of notations
have emerged but only a few have any
general appeal.

Dilemmas are opportunities in dis-
guise. Only one or two notations were
devised with any thought given to
graphic- and information-design tech-
nique. Many are downright amateurish
in their treatment of visual cognition.
There is much room for improvement.
Yet notations are used by isolated dis-
ciplines with little sharing of lessons
learned. Efficacy is under-studied,
even as shortcomings become
obvious. All these dilemmas point to
the need to take stock of the various
notations to look carefully at how they
differ and why.

The Anatomy of System Notations is an
inventory of the graphic devices used
in system notations. The ultimate goal
is the creation of a new notation that:
(a.) can express the full range of
elements and dynamics of systems;
(b.) can make sophisticated system
analysis available to everyone, includ-
ing across disciplines; and, (c.) works

with emerging forms of interactive
media. The Anatomy moves us closer
to that goal on three counts. First, the
shortcomings of notations can be
catalogued. These are listed separately
from this poster as a set of Problem
Cards. Second, the Visual Vocabulary
of Systems is a codex that captures all
the elements and dynamics of sys-
tems within the theoretical literatures
of various disciplines. By comparing
the Anatomy to the Visual Vocabulary,
it is possible to see what subjects are
hard (or impossible) to express using
existing notations. Third, lessons can
be drawn from innovative techniques
found within existing notations.

Notations are not the only way to vis-
ualize systems. Information graphics,
gigamaps, and synthesis maps mix
various types of graphic to explain
systems through bricolage. Popular
genres of video games are about sys-
tem building and maintenance. Visual
programming languages use graphical
notations to create software. The list
goes on. Much can be learned from
these alternatives, which are gaining
large audiences. These methods also
make selective use of notations and
would benefit from notation improve-
ment. Notations, in turn, would benefit
from cross-fertilization from these
alternatives. All that begins by taking
stock of what is available.

The larger concern is that notations
have not kept pace with the complexi-
ty of systems and their entanglement
in our lives. What sort of agency do we
have if we do not grasp the full gamut
of systems (natural and human-made)
that push and pull us in all directions?
What vulnerabilities and harms are we
exposed to? A well-designed graph-
ical notation can be part of a visual
repertoire for making our highly
systematized world easier to interpret.

graphical notations

What counts as a graphical notation
for system diagramming? For starters,
it has to be a set of graphic devices
(textual elements, symbols, and
visuals) that can be assembled to
meaningfully describe the moving
parts of a system. The set can emerge
as widely recognized conventions or
be stipulated as a formal specification.
Some formal specifications become
standards governed by a professional
association. Crucially, any system is
made up of moving parts that interact
to affect overall behavior. Thus, the set
of graphical devices cannot merely
describe static structures. Moreover,
the devices have to be a stable, finite
set. That rules out visualization
methods that use whatever graphic
devices seem appropriate for the case
at hand; there has to be a standard
basis with which to compare features
of different systems.

The result of a diagram is a model, a
simplification of the system being
described; the map does not equal the
territory, so to speak. That does not
mean the description cannot be rich,
with all the most salient details includ-
ed. Even with notations embedded
within visual programming languages,
where the diagram elements perform
functions, not everything about the
system is shown; there remains a
great deal of activity working behind
the scenes, abstracted away from the
viewer’s consideration.

Most notations are variations on two
themes: the network and the stack, as
shown below. Network diagrams (or
hypergraphs) are arrangements of
nodes and links. Stack diagrams can
be thought of as nodes without links,

as proximate or abutting borders bet-
ween cells are what imply interaction.
System stacks are so-called because
there is a loose order, from low-level
sub-systems to higher order ones. Or,
in the case of radial arrangements,
from central cells to peripheral ones.

What sets one notation apart from any
other? They differ along at least three
dimensions. First, most diagram items
are symbolic stand-ins for parts of
actual systems. For example, an arrow
with a solid line may indicate “excitory”
relation, whereas a dashed line may be
an “inhibitory” one. A square node may
refer to “sellers” and a round one may
be “buyers.” There is a limit to how
many semantic encodings a viewer
can be expected to remember. Second,
each notation has its own composi-
tional rules which stipulate how the
pieces are supposed to fit together
visually. For example, some notations
specify that links can only connect to
nodes through “ports” (designated
spots on the node). Third, a notation is
made easy to interpret by meaningful
spatial arrangements of items (syn-
tactics). For example, a series of nodes
and links may form a loop or a circuit
that is recognizable as such. Some
technical notations are complicated on
one or more of these dimensions.
Perhaps they have a large library of
symbols that have to be learned. Or
they have elaborate rules for diagram
layouts.

The Anatomy of System Notations
looks for commonalities across the
various notations and groups them as
types of graphical device. Multiple
examples of each one are shown to
show the range of implementations.

basic forms

V . 0 . 9 . 0 B Y P E T E R S T O Y K O

referenced notations

sources

RUNNING OBJECTS

Objects can move along links or be shown
moving along-side them. With SC notation,
multiple circle-with-arrow symbols run
parallel to directionless links to show sig-
nals (data) passing between nodes. The
second row shows running counters from
Machinations notation, with animated Petri
Net counters traveling along links in a
similar way. SOD notation relies on running
signals, including a backward-bending
arrow and label to indicate a signal that
“balks” before arriving.

48

var1

var3

var2

isReady()

turnOn()

2

4

RUNNING ARROWS

Unlabeled arrows can be placed alongside a
link to indicate directionality. That might be
done because the link is very long and
winding, or because other available link
encodings are used for non-directional
information. A more space efficient option is
to add arrow heads at one or more points
along the link. A less obvious application is
to indicate secondary flows that might run
counter to primary directional indicators.

49

Text and graphics on this poster can be used freely by others in compliance
with a Creative Commons Free Culture license. The license only requires
attribution, which can be specified as: Peter Stoyko, Anatomy of System
Notations 1.0.0 — Poster (The SystemViz Project, www.systemviz.com, 2023).
Failure to site is a legal violation of the license and an act of plagarism.
In the spirit of open source collaboration, users are encouraged to make
recommendations about the continued evolution of the inventory and
submit proposals for modification.

Author. Peter Stoyko is an interdisciplinary
social scientist and information designer
who studies systems, culture, foresight,
and governance.

Learn more about the SystemViz project
and download materials at:

www.systemviz.com

Network

SYNTAX

Stack

Node

Container

Link

Layer

Cell

pump
A B

low

high

on

off

37 PROXIMATE MARK

A compact mark or symbol is placed close
to an item (usually a node) to add a qualifier.
For example, some process-map notations
assign roles to particular nodes and links,
represented by color-coded circles that are
placed near the item (sometimes in an
overlapping arrangement to conserve space
and indicate grouping). ORM2 uses lines
placed above or below bi-directional transit
nodes to designate uniqueness constraints
and a nearby circuit icon (, , , etc.) to
indicate a ring constraint. Proximate marks
can be placed anywhere near an item but
most notations that use them place them
above the item in a designated relative
position (left, center, or right side).

NODE-MARGIN MARK

Small icons or encoded markings can be
placed just inside the outer boundaries of
rectangular nodes to indicate node type,
quality, or state. Designated corners are
often reserved for a particular set of marks
to set viewer expectations. A corner mark
can protrude out of one side of the node’s
outer boundary or be placed on the bound-
ary line, but cannot be positioned entirely
outside (tag, 39) or mostly outside as an
overlay (badge, 40).

38

C. Spatial Arrangements (Syntactics)

B. Compositional Rules (Grammar)

Loop

Radial Stack

Circuit

Concentric Stack

Lanes

Pyramidal Stack

Tree

Parallel Stack

A. Semantic Encodings (Symbolism)

= excite = inhibit

= latent = active

= and = xor

INSET TOPOLOGY

Mathematical and computer-science nota-
tions may show network archetypes inside
nodes, indicating an underlying structure.
These miniature diagrams are more like
thumbnail sketches than fully-fledged
diagrams insofar as they are unlabeled and
mostly indicate network type or general
circuit structure.

34

NESTED NODE

Nested nodes are one or more nodes
located inside of other nodes. The nesting
can represent a lower order of scale: the
internal operations of the node that would
otherwise be too small to show on the
diagram. That does not preclude nested
nodes from interacting with nodes nested
inside other nodes. A nested node is
distinguished from a container by the ability
of the encompassing node to interact as
any node would. For example, VSA notation
(top row) shows nested nodes interacting
across encompassing nodes, while the
encompassing nodes act as aggregate
agents. UML (middle row) uses nesting to
show both sub-systems and the classifica-
tion of instances. Energese (bottom row),
uses encompassing nodes to represent
organizations.

28

GROUP NODE

A group node aggregates a collection of
mixed items. The items can show changes
to internal composition or structure of the
larger node. They can also be a shorthand
for representing collective behavior. MBWB
shows molecules as amalgams of bonded
chemical elements (bottom row). Perhaps
confusingly, these structures are shown as
networks within a larger network diagram,
creating a need to differentiate both types
of networks visually.

29

BOUNDARY PORT

Boundary ports can regulate access to
nodes within a container (or on the other
side of any sort of boundary). A single port
may offer access through a boundary and
into a node, or allow some links to pass
without ports but not others (top right). A
boundary port can regulate access from the
inside outward, not just from the outside
inward (bottom right). As with node ports,
these can be organized using interfaces too
(bottom left).

27

DECOMPOSITION BLOCKS

Nodes or containers can be used to repre-
sent multiple levels of scale. Decomposition
blocks show this using a magnification
metaphor, with projection lines indicating
that a lower level of magnitude is being rep-
resented. With SDL and SADT notations the
blocks are shown as three-dimensional
planes (bottom example). Even though the
example shows underlying systems also in
3D (isometric) perspective, this need not be
the case; the planes may be shown in 3D
but the contents can be a flat 2D diagram.
Call out boxes () common to information
diagrams and comic-book dialogue can also
be used as decomposition blocks, although
many notations use that particular graphic
device for notes (60).

30

(ACYCLICAL) CONDENSATION

Busy networks can obscure big-picture
effects. Conversely, summary networks can
hide salient underlying churn. Some nota-
tions summarize causal links between loops
and circuits (DAG notation) while retaining
cyclical dynamics. For example, the top row
shows a super-imposed condensation,
while the bottom row offers an acyclical
“macro network” below the cyclical one (see
Wahl & Runge, 2023).

31

DISCLOSURE TOGGLES

The DSRP notation has nodes with corner
triangles to reveal node parts. The triangles
work like the triangle toggles on Graphical
User Interfaces (GUIs). On a static diagram, a
downward triangle () indicates that
constituent parts are arranged below. A
rightward () triangle indicates constituent
parts exist but are not shown. Toggles are
used with transit nodes too (bottom row),
as well as a variety of spatial arrangements
of component parts below the node. This
sort of device is ideally suited to interactive
diagrams rather than static ones. BPMN also
has a toggle () placed more centrally to
indicate “collapsed sub-process.”

32

a b c

A B C

in

out

INSET FUNCTION

Interaction between nodes may not be
straight-forwardly linear. A graph may be
shown inside a node to show curvilinear
interactions or even more complicated
functions. Energese shows how a path
changes depending on what other influence
happens to be interacting (top row). The
graphs of two different nodes can even be
connected with separate lines to show
more precisely how the interaction works
(third row). Visual programming languages
have more flexibility for showing “live”
graphs on nodes as interaction proceeds.
Some flow-charts will indicate the desired
distribution of a quantity across categories
(bottom row).

33

Distribution

